Continuous glucose monitoring in interstitial subcutaneous adipose tissue and skeletal muscle reflects excursions in cerebral cortex.
نویسندگان
چکیده
Continuous glucose monitoring (CGM) is being explored using several types of glucose sensors. Some are designed for subcutaneous adipose tissue. It is important to determine to which extent these glucose fluctuations in different tissues reflect changes taking place in the central nervous system, where glucose sensing is thought to occur. We studied the ability of subcutaneous adipose interstitial fluid measurements to parallel glucose propagations in blood, muscle, and central nervous system (CNS) during hyper- and hypoglycemia. A subcutaneous CGM system was applied in the CNS, subcutaneous adipose tissue, and skeletal muscle of nine Vietnamese potbellied pigs, and data were compared with frequent sampling in blood. Alterations in glucose levels were induced with intravenous glucose and insulin. During hyperglycemia, no difference was detected in delay between blood and interstitial glucose levels in subcutaneous adipose tissue (18.0 +/- 0.8 min), muscle (18.0 +/- 0.9 min), and CNS (20.3 +/- 1.2 min), respectively. During hypoglycemia, we found no time difference between interstitial parameters in the three tissues. However, the amplitude of glucose changes varied considerably, with a smaller magnitude of glucose change taking place in the brain. The timing of glucose excursions in subcutaneous adipose tissue and muscle reflect excursions in CNS. The reduced magnitude of glucose excursions in the brain suggests that different mechanisms of glucose transport are operative in CNS compared with subcutaneous adipose tissue and muscle.
منابع مشابه
Assessment of transcapillary glucose exchange in human skeletal muscle and adipose tissue.
We studied the kinetics of glucose exchange between plasma and interstitial fluid (ISF) in human skeletal muscle and adipose tissue under fasting conditions. Five normal human subjects received an intravenous [6,6-2H2]glucose infusion in a prime-continuous fashion. During the tracer infusion, the open-flow microperfusion technique was employed to frequently sample ISF from quadriceps muscle and...
متن کاملThe Effect of High-Intensity Interval Training and Continuous Training on the Desnutrin Gene Expression in the Subcutaneous Adipose Tissue and the Quadriceps Femoris Muscle Tissue of Obese Male Rats
Background. Desnutrin is an enzyme that catalyzes the first step of cytoplasmic triacylglycerol lipolysis from white adipose tissue and several other tissues, which are disrupted by the obesity and metabolic syndrome. Objectives. The aim of this study was to compare the effect of high-intensity interval training and continuous training on the desnutrin gene expression in the subcutaneous adipo...
متن کاملComparing the 6 weeks of high-intensity interval and continuous training with standard diet on desnutrin and FNDC5 genes expression after a period of high fat diet in subcutaneous adipose tissue and the quadriceps muscle tissue of obese male rats
Introdution: Obesity is a systemic disorder that disruption the regulation of the effective proteins; in fat metabolism (Desnurtin, FNDC5 it leads to resistance to insulin and Diabetes. The aim of this study was comparing the 6 weeks of high-intensity interval and continuous training with standard diet on desnutrin and FNDC5 genes expression in subcutaneous adipose tissue and the quadrice...
متن کاملEffect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue.
Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-...
متن کاملRates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects.
Skeletal muscle and adipose tissue lipolysis rates were quantitatively compared in 12 healthy nonobese and 14 insulin-resistant obese subjects for 3.5 h after an oral glucose load using microdialysis measurements of interstitial glycerol concentrations and determinations of local blood flow with 133Xe clearance in the gastrocnemius muscle and in abdominal subcutaneous adipose tissue. Together w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 54 6 شماره
صفحات -
تاریخ انتشار 2005